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Logical Pre- and Post-Selection Paradoxes,
Measurement-Disturbance and Contextuality

M. S. Leifer1,2 and R. W. Spekkens1

Many seemingly paradoxical effects are known in the predictions for outcomes of
measurements made on pre- and post-selected quantum systems. A class of such effects,
which we call “logical pre- and post-selection paradoxes,” bear a striking resemblance to
proofs of the Bell-Kochen-Specker theorem, which suggests that they demonstrate the
contextuality of quantum mechanics. Despite the apparent similarity, we show that such
effects can occur in noncontextual hidden variable theories, provided measurements are
allowed to disturb the values of the hidden variables.
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1. INTRODUCTION

The study of quantum systems that are both pre- and post-selected was
initiated by Aharonov, Bergmann and Lebowitz (ABL) (Aharonov et al., 1964),
and has led to the discovery of many counter-intuitive results, which we call pre-
and post-selection (PPS) paradoxes.3 These results have led to a long debate about
the interpretation of the ABL probability rule.4

An undercurrent in this debate has been the connection between PPS para-
doxes and contextuality. The first paper describing a PPS paradox, that of Albert
et al. (1985), showed that the probability assigned to an outcome of a measure-
ment given a pre- and post-selection depends not only on the projector associated
with that outcome, but the entire projector-valued measure associated with the
measurement. This shows that the quantum probabilities in PPS scenarios exhibit
context-dependence. It was argued that this undermines the importance of the
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impossibility of a noncontextual hidden variable model of quantum mechanics—
the content of the Bell-Kochen-Specker theorem (Bell, 1966; Kochen and Specker,
1967)— because there is little reason to expect probabilities conditioned on hidden
variable valuations to be noncontextual when the quantum probabilities themselves
are contextual. Bub and Brown (1986) disputed this claim by showing that similar
reasoning applied to proofs of nonlocality would imply that quantum mechanics
allows for superluminal signalling. Albert et al. (1986) responded that is was not
their intention to conclude anything about HVTs, although the language of Albert
et al. (1985) does suggest such a reading.5 Moreover, discussions of PPS para-
doxes continue to make use of a language that suggests implications for ontology
(Vaidman, 1999).

In this paper, we show that PPS paradoxes can be explained without invoking
contextuality if one allows that measurement interactions can cause a disturbance
to the values of the hidden variables of the system; a possibility that is often
overlooked in analyses of PPS paradoxes. The paper is organized as follows.
After introducing a general form of the ABL rule, we give a simple example
of how the surprising features of a particular PPS paradox, known as the three-
box paradox, can be reproduced in a simple noncontextual model that involves
measurement-disturbance. Thereafter, we consider the analogue of the ABL rule
for HVTs, introduce the assumption of noncontextuality, and introduce the notion
of a “logical” PPS paradox. We then show how PPS paradoxes of this type are
consistent with noncontextuality if one allows for measurement-disturbance. We
end the paper with a brief discussion of how a recent theorem that connects logical
PPS paradoxes to proofs of contextuality (Leifer and Spekkens, 2005) appears in
light of our results.

2. PRE- AND POST-SELECTION IN QUANTUM THEORY

2.1. Quantum Measurements

We consider a finite dimensional Hilbert space and assume that no evolution
occurs between measurements. The outcome of a quantum measurement, M , is a
random variable, which we denote by XM. We restrict attention to the case where
the range of XM is a discrete set labelled by j.

A measurement has both a statistical aspect, which specifies the probability
of obtaining the different outcomes of the measurement for any given density
operator, and a transformation aspect, which specifies how the quantum state is
updated as a result of the measurement. We restrict our attention to sharp mea-
surements, that is, those associated with projector valued measures (PVMs) (sets
of projectors {P M

j } that sum to the identity operator, �jP
M
j = I ). The probability

5 For instance, it is stated that “The assumption of Gleason and of Kochen and Specker [. . . ] is not
satisfied by quantum mechanical systems within the interval between two measurements!”
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of obtaining outcome XM = j when the initial density matrix is ρ is then given by
pρ(XM = j ) = T r(P M

j ρ). The most general possible transformation aspect of M
is given by a set of completely positive (CP) maps {EM

j } satisfying

EM†
j (I ) = P M

j (1)

where E† is the dual of E defined by Tr(E#(A)B) = Tr(AE(B)) . The updated state
on obtaining outcome XM = j is

ρ|XM=j = EM
j (ρ)

Tr
(
EM

j (ρ)
) . (2)

When EM
j (ρ) = P M

j ρP M
j , the transformation is said to follow the Lüders rule

(Lüders, 1951).

2.2. Pre- and Post-Selected Systems

Imagine an initial, an intermediate, and a final measurement occurring at
times tpre, t , and tpost respectively, where tpre < t < tpost. We pre-select (post-
select) by conditioning on a particular outcome of the initial (final) measurement.
Denote the occurrence of this outcome by Apre (Apost), and suppose that it is asso-
ciated with a projector �pre (�post). Let the intermediate measurement be denoted
by M.

Assuming that the density operator prior to tpre is I/d, and assum-
ing Lüders rule for the initial measurement, the density operator after tpre is
ρpre = �pre/Tr(�pre). By Bayes’ theorem, we can deduce that the probability of
obtaining the outcome k for M is

pABL(XM = k|Apre, Apost, M) = Tr
(
�postEM

k (�pre)
)

Tr
(
�postEM

k (�pre) + �postEM
¬k(�pre)

) (3)

where EM
¬k(ρ) = �j �=kEM

j (ρ). We refer to this as the ABL probability rule (see
Aharonov and Vaidman, 2002). From now on, unless stated otherwise, the Lüders
update rule is assumed to apply for all intermediate measurements. In this case,
EM

k (ρ) = P M
k ρP M

k . Note that, unlike the standard Born rule probability, the ABL
probability depends, through EM

¬k , on the entire PVM {P M
j } and not just on the

projector P M
k that is associated with the outcome for which the probability is being

computed. This will be critical further on.

2.3. The Three-Box Paradox

A simple example of the seemingly paradoxical predictions of the ABL rule
is the three-box paradox (see Aharonov and Vaidman, 2002). Suppose we have a
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particle that can be in one of three boxes. We label the state where the particle is in
box j by |j 〉. The particle is pre-selected in the state |φ〉 = 1√

3
(|1〉 + |2〉 + |3〉),

i.e., �pre = |φ〉〈φ|, and post-selected in the state |ψ〉 = 1√
3

(|1〉 + |2〉 − |3〉), i.e.,
�post = |ψ〉〈ψ |. At an intermediate time, we either determine whether the particle
is in box 1 or not, or we determine whether it is in box 2 or not. The first
measurement, M , corresponds to the PVM {P M

1 , P M
2 }, where

P M
1 = |1〉 〈1| P M

2 = |2〉 〈2| + |3〉 〈3| . (4)

For this measurement, pABL(XM = 1|Apre, Apost,M) = 1.
The second measurement, N , corresponds to the PVM = {P N

1 , P N
2 }, where

P N
1 = |2〉 〈2| P N

2 = |1〉 〈1| + |3〉 〈3| (5)

In this case, pABL(XN = 1|Apre, Apost, N ) = 1.

Thus, if we ask whether or not the particle was in box 1, we find that it was
in box 1 with certainty, and if we ask whether or not it was in box 2, we find that
it was in box 2 with certainty!

2.4. An Analogue of the Three-Box Paradox

Following the spirit of previous work by Kirkpatrick (2003), we present a
simple toy model that parallels the features of the three-box paradox.

Consider an opaque box that can be divided into two opaque boxes by placing
a double partition in the box and breaking it into two halves. It is also possible to
put the two halves back together and to remove the partition. The partition can be
placed in two possible positions, dividing the box either into front and back halves
or into right and left halves. Suppose there is a ball inside the box. One can verify
whether the ball is in the front half of the box by dividing the box into front and
back halves and then shaking the front half of the box to hear whether the ball
is inside. If the ball is found in the front then this action completely randomizes
the left-right position of the ball. However, if it is not found in the front then its
position remains undisturbed because the back half has not been shaken. A similar
procedure can be used to verify whether the ball is in the back half of the box, only
in this case the left-right position gets randomized if the ball is in the back and is
left undisturbed if it is in the front. Two further procedures can be used to verify
whether the ball is in the left or right half of the box, randomizing the front-back
position of the ball whenever it is found in the half that one is checking.

Now imagine that one pre-selects on finding the ball in the front upon check-
ing for it there, and one post-selects on finding the ball in the back upon checking
for it there. Suppose that the two possible intermediate measurements are: 1)
checking to see if the ball is on the left, and 2) checking to see if the ball is on
the right. Clearly, if one checked to see if it was on the left, then one must have
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found it on the left, since otherwise there would have been no disturbance and
consequently no way for the ball to have moved from the front to the back of the
box. But, by the same argument, if one checked to see if it was on the right, then
one must have found it on the right.

This model succeeds at reproducing the surprising feature of the three-
box paradox, while being noncontextual according to the operational definition
provided in Spekkens (2004a) (which we shall discuss further on). Moreover, it is
clear the measurement-induced disturbance is critical to achieving the surprising
results.

In the rest of the paper, we show that this result is generic; PPS paradoxes
do not require contextuality for their explanation but do require measurement-
disturbance. The demonstration requires us to examine explicitly how PPS sce-
narios are treated within an HVT.

3. HIDDEN VARIABLE THEORIES

3.1. Measurements in Hidden Variable Theories

An HVT is an attempt to understand quantum measurements as revealing
features of ontic states, by which we mean complete specifications of the state of
reality. This may include variables that are hidden to someone who knows only
the preparation procedure and it may also include the quantum state if this has
ontic (rather than epistemic) status in the HVT. Let � be the set of all ontic states
in an HVT. In such an approach, quantum mechanical preparation procedures
correspond to probability distributions over the ontic states. We denote these by
functions µ : � → R+ satisfying

∫
�

µ(λ) dλ = 1.6

A common assumption that is made for HVTs is that the ontic state deter-
mines the outcomes of all possible sharp measurements uniquely. We refer to
this assumption as outcome determinism for sharp measurements, and we pre-
sume it to hold in all that follows. Given this assumption, the statistical aspect
of a measurement M is represented by a set of idempotent indicator functions
χM

j : � → {0, 1}, that sum to the unit function �jχ
M
j (λ) = 1. χM

j (λ) is the prob-
ability (0 or 1) of obtaining outcome j given that the ontic state is λ. More
generally

pµ(XM = j ) =
∫

�

χM
j (λ)µ(λ) dλ (6)

is the probability of obtaining the outcome j given the distribution µ.
We now turn to the transformation aspect of measurements. We must allow

for the possibility that measurements cause a disturbance (possibly stochastic)

6 We assume that � satisfies the measure-theoretic requirements necessary to make such integrals
well-defined.
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to the ontic state of the system. Therefore, the disturbance induced by a
measurement is described by a transition matrix DM

j : � × � → R+ satisfying∫
�

DM
j (λ, ω) dλ = 1. DM

j (λ, ω) is the probability of a transition from ω to λ, given
that XM = j .

Thus, the most general transformation aspect of a measurement M on obtain-
ing outcome j is composed of both a Bayesian updating of the distribution and
a disturbance, and is consequently represented by a norm-decreasing transition
matrix


M
j (λ, ω) = DM

j (λ, ω)χM
j (ω). (7)

This plays an analogous role in the HVT to the trace-decreasing CP map
associated with a measurement outcome in quantum theory. In particular, it satisfies∫

�


M
j (λ, ω) dλ = χM

j (ω), (8)

which is the analogue of Eq. (1). We have the following update rule for the
probability density on obtaining XM = j

µ(λ|XM = j ) =
∫
�


M
j (λ, ω)µ(ω) dω∫

�

M

j (λ, ω)µ(ω) dωd λ
, (9)

which is the analogue of Eq. (2).

3.2. Pre- and Post-Selection in Hidden Variable Theories

Pre- and post-selected systems can be described in an HVT as follows. The
successful pre-selection event, Apre, is associated with a probability distribution
µpre(λ). The intermediate measurement, M , is described by a set of indicator
functions {χM

j } and corresponding transition matrices {
M
j } and the successful

post-selection event, Apost is associated with an indicator function χpost. Applying
Bayes’ rule together with Eqs. (6) and (9) we obtain the PPS probability rule for
HVTs

pHVT(XM = k|Apre, Apost,M)

=
∫
�

χpost(λ)
M
k (λ, ω)µpre(ω) dω dλ∫

�
χpost(λ)

(

M

k (λ, ω) + 
M
¬k(λ, ω)

)
µpre(ω) dω dλ

. (10)

where 
M
¬k(λ, ω) = �j �=k


M
j (λ, ω). This is the analogue of Eq. (3).

3.3. Measurement Noncontextuality

A particularly natural class of HVTs are the Measurement Noncontex-
tual Hidden Variable Theories that satisfy outcome determinism for sharp
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measurements, which we refer to as MNHVTs (see Spekkens, 2004a, for
a discussion of different types of noncontextuality Spekkens (2004a). The
assumption of measurement noncontextuality is that if there is an outcome k of
a measurement M and an outcome j of a measurement N that have the same
probability for all possible preparations, then they must be represented by the
same indicator function in the HVT. For quantum systems, this will be the case
if and only if both the outcomes correspond to the same projector P , even though
M and N may be associated with different PVMs. Thus, noncontextuality implies
that the indicator functions in both cases depend only on the projector P, i.e.,

χM
k (λ) = χN

j (λ) = χP (λ). (11)

Equivalently, in an MNHVT, every projector is associated with a unique
indicator function (defining a unique subset of �) which specifies the property
that is revealed by a measurement of that projector.

This implies stringent constraints on the probabilities that can be simul-
taneously assigned to commuting projectors. For instance, since any pair of
orthogonal projectors Q1,Q2 can appear together in the same PVM, it fol-
lows that χQ1 + χQ2 ≤ 1 and consequently that χQ1χQ2 = 0 (where we leave
the dependence of χ on λ implicit). Moreover, if Q = Q1 + Q2, then Q is
a coarse-graining of Q1 and Q2, and therefore is represented in the HVT by
χQ = χQ1 + χQ2 . Given these identities, it follows that, for commuting pro-
jectors P and Q, χP χQ = χPQ and χP + χQ − χP χQ = χP+Q−PQ. Finally, the
projector onto the null space, Pnull, is represented by χPnull = 0 since the associated
property never holds. Denoting the probability one assigns to P given a distribution
µ(λ), by p(P ) = ∫

�
χP (λ)µ(λ) dλ, we obtain the following constraints

Algebraic conditions: For projectors P,Q such that [P,Q] = 0,

0 ≤ p(P ) ≤ 1 (12)

p(I − P ) = 1 − p(P ), (13)

p(I ) = 1, p(Pnull) = 0, (14)

p(PQ) ≤ p(P ), p(PQ) ≤ p(Q), (15)

p(P + Q − PQ) = p(P ) + p(Q) − p(PQ). (16)

If one conditions on a particular ontic state ω, so that µ(λ) = δ(λ − ω) and
p(P ) = χP (ω), then all of these probabilities must be either 0 or 1. However, the
Bell-Kochen-Specker theorem shows that there are sets of projectors for which
there are no assignments of probabilities 0 or 1 that satisfy the algebraic conditions.
This is an example of a proof of the impossibility of an MNHVT.

We are now in a position to make precise what it is about PPS paradoxes that
suggests that these might have something to do with measurement contextuality.
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The critical fact is that there exist sets of projectors that are each assigned proba-
bility 0 or 1 by the ABL rule such that the overall probability assignment violates
the algebraic conditions. The three box paradox is an example of this. We call any
such case a logical PPS paradox.

First of all, let us clarify why, in the absence of the measurement noncon-
textuality assumption , logical PPS paradoxes do not violate classical probability
theory. The reason is that only assignments that are similarly conditioned need
to respect the algebraic constraints, and when one conditions on the nature of the
intermediate measurement, the ABL probabilities do satisfy the constraints. It is
only if we consider ABL probabilities for different intermediate measurements
together that we find that these probabilities do not satisfy the functional relations
defined in Eqs. (12–16). (For instance, we considered two distinct intermediate
measurements in the three box paradox.) Similarly, one can avoid a contradiction
in a HVT by assuming that indicator functions depend on measurement context.
In this case, a projector is not associated with a unique indicator function and
consequently can be assigned different probabilities in different measurement
contexts.

This way of describing things suggests that logical PPS paradoxes are them-
selves proofs of the impossibility of an MNHVT. This only follows however if the
dependence of the ABL probabilities on context implies a similar dependence of
the indicator functions on context, equivalently, if context dependence of proba-
bilities that are conditioned on a pre- and post-selection of measurement outcomes
implies context dependence for probabilities that are conditioned on a particular
ontic state.

Since the HVT must reproduce the ABL probabilities, we can infer that
pHVT(XM = k|Apre, Apost,M) must be context-dependent. However, this does not
immediately imply context-dependence for the indicator functions. One possi-
ble reason for this is that pHVT(XM = k|Apre, Apost,M) depends on the transition
matrices {
M

j (λ, ω)}, and thus, given Eq. (7), it depends not only on the indi-
cator functions {χM

j (λ)}, but also on the transition matrices for the disturbance,
{DM

j (λ, ω)}. We must therefore begin by analysing the possibility of context-
dependence of the DM

j (λ, ω).

3.4. Transformation Noncontextuality

In Spekkens (2004a), the notion of noncontextuality is generalized to trans-
formations. Transformation noncontextuality is the assumption that equivalent
transformations (i.e., those represented by the same CP map in the quantum for-
malism) are associated with the same transition matrix in an HVT. Thus, if outcome
k of a measurement M and outcome j of a measurement N are both associated
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with the CP-map E , then


M
k (λ, ω) = 
N

j (λ, ω) = 
E (λ, ω). (17)

If the measurement is sharp, that is, associated with a projector P, and the CP
map E corresponds to the Lüders rule, that is, E(ρ) = PρP, then a dependence
on E is simply a dependence on P. In this case, the assumption of transformation
noncontextuality is that 
M

k (λ, ω) = 
N
j (λ, ω) = 
P (λ, ω). By Eq. (8), it follows

that χM
k (λ) = χN

j (λ) = χP (λ). Thus, for Lüders rule measurements, transforma-
tion noncontextuality implies measurement noncontextuality. So if we can show
that transformation noncontextuality is consistent with the existence of logical
PPS paradoxes, then we have also shown that measurement noncontextuality is
consistent with their existence.

4. MAIN RESULTS

As noted below Eq. (3), pABL(XM = k|Apre, Apost,M) depends on the identity
of the entire PVM {P M

j } associated with M and not just on the projector P M
k

associated with the outcome k. Consequently, if the HVT is to reproduce the ABL
predictions, pHVT(XM = k|Apre, Apost,M) must also depend on {P M

j } and not just
on P M

k . We will show that such a dependence can be achieved even under the
assumption of transformation noncontextuality.

First note that the presence of 
M
¬k(λ, ω) in Eq. (10) shows that the PPS

probability for HVTs can have a dependence on the PVM even under the assump-
tion of transformation noncontextuality, since 
M

¬k(λ, ω) = �j �=k

M
j (λ, ω) =

�j �=k
P M
j

(λ, ω) depends on the entire PVM. We now show that it must have such a

dependence. Suppose M and N are associated with distinct PVMs, {P M
j } and {P N

j }
where P M

k = P N
k = P for some k. Suppose further that the CP maps for each out-

come are described by the Lüders rule, so that the effective CP maps associated with
the “not k” outcome are EM

¬k(·) = �j �=kP
M
j (·)P M

j and EN
¬k(·) = �j �=kP

N
j (·)P N

j .

The distinctness of {P M
j } and {P N

j } then implies that EM
¬k and EN

¬k are distinct,
which in turn implies that there is some density operator ρ that is mapped to
distinct density operators by EM

¬k and EN
¬k . Consequently, there must be some dis-

tribution µ(λ) that is mapped to distinct distributions by 
M
¬k(λ, ω) and 
N

¬k(λ, ω).
However, this is only possible if 
M

¬k(λ, ω) and 
N
¬k(λ, ω) are themselves distinct

transition matrices. Being distinct, they cannot depend only on P, but must depend
on the full PVM. This concludes the proof.

Finally, we prove that any transformation noncontextual HVT that can repro-
duce the ABL predictions (of which logical PPS paradoxes are an example) must
involve measurement-disturbance.

We assume the contrary and derive a contradiction. If a measurement involves
no disturbance in a HVT, then 
M

¬k(λ, ω) = δ(λ − ω)χM
k (ω) (which is simply
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Bayesian updating). As noted above, pHVT(XM = k|Apre, Apost,M) must depend
on the full PVM rather than just P M

k to reproduce pABL(XM = k|Apre, Apost,M).
Now, consider the pair of measurements M and N introduced above. Since

M

k and 
N
k depend only on P (by virtue of transformation noncontextual-

ity), it follows that 
M
¬k and 
N

¬k must depend on the PVM. The absence
of measurement-disturbance would imply 
M

¬k(λ, ω) = δ(λ − ω)�j �=kχ
M
j (λ) and


N
¬k = δ(λ − ω)�j �=kχ

N
j (λ). But by the assumption of measurement noncontex-

tuality, �j �=kχ
M
j (λ) = �j �=kχ

N
j (λ) = χI−P (λ), which implies that 
M

¬k(λ, ω) =

N

¬k(λ, ω). However, if the transition matrices are the same, then they do not
depend on the PVM context, and this contradicts the assumption that the HVT
reproduces the predictions of the ABL rule. This concludes the proof.

5. OUTLOOK

We have shown that the existence of logical PPS paradoxes in a theory does
not imply contextuality, which would seem to suggest that the two phenomena
are unrelated. However, we recently proved a theorem (Leifer and Spekkens,
2005) showing that the mathematical structure of every logical PPS paradox in
quantum mechanics is sufficient to construct a proof of the Bell-Kochen-Specker
theorem, i.e a proof of the contextuality of quantum mechanics. This does not
contradict the results presented here because we did not show that a logical PPS
paradox is itself a proof of the Bell-Kochen-specker theorem; measurements that
are temporal successors in the PPS paradox must be treated as counterfactual
alternatives in the proof of the Bell-Kochen-specker theorem. This distinction
is critical, since an earlier measurement can cause a disturbance to the ontic
state that is monitored by a later measurement, whereas the possibility of having
implemented a different measurement cannot disturb the ontic state of the system
in the actual measurement.

Nonetheless, there is some evidence that within the framework of HVTs
satisfying additional constraints, one might find a closer connection between PPS
paradoxes and contextuality. For instance, in the model of Section 2.4 there is
no analogue of the uncertainty principle, since there is a nonzero probability
of ascertaining both the left-right and front-back position of the ball without
disturbing it in any way. Meanwhile, a toy theory that is noncontextual (by the
operational definition of Spekkens, 2004a) and that does include a strong analogue
of the uncertainty principle, that of Spekkens (2004b), seems to be devoid of logical
PPS paradoxes. This suggests that there may be a natural set of conditions that
both quantum theory and the toy theory of Spekkens (2004b) satisfy, but that the
model of Section 2.4 and other HVTs do not satisfy, under which contextuality
and logical PPS paradoxes are either both present or both absent. We expect that
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some of the quantum structures discussed at this conference might provide the
appropriate setting to address this question.
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